Wednesday, July 27, 2011

Discounting Details

This post offers some further details in connection with an essay I've written for Bloomberg Views. It will be was published tomorrow, 28 July 2011. The topic is economic discounting, which I've posted on before. I naturally didn't get into any mathematical details in the Bloomberg essay, but some readers may find that looking at a little of the mathematics may help to clarify the key point of the argument. So here goes (in a sketch; I encourage everyone to read the original paper):

Suppose that the true discount rate for next year is r1, for the year after is r2, and so on, the rate for the ith year being ri. No one knows what these will be; the rates will fluctuate from year to year. To calculate the total discount factor over a string of N years, you should multiply the individual factors associated with each year as follows,

where δt = 1 year.

But because the future isn't known, Farmer and Geanakoplos point out, determining the correct discount factor to use over the coming N years means averaging over all possible future paths, i.e. all possible sequences of values r1, r2, ... up through rN. Hence, we need to calculate the value of an "effective" discount factor given by the formula,

[Note: This sum, of course, should be divided by the total number of paths to give the average, effective discount.]

Now, it is tempting to think that when you go through the details of calculating this average, summing up the contributions for all possible paths, and dividing by the number of paths, you will find some kind of simple result in which Deff(T) will be equal to a single exponential factor with an average discount rate for the N years, ravg. In others words, you might think -- and most peoples' intuition would tend this way -- that you would find an equation such as


That is, the effective discount rate over N years takes an exponential form with some constant ravg.

Seems sensible, but turns out to be totally wrong. If you demand the equality reflected in the previous equation, then, to make it work as T gets large, it turns out that in many cases ravg will not be a constant in time, but will take on smaller and smaller values as T gets larger. This is what Farmer and Geanakoplos have shown using computer simulations to do the calculation. They used a so-called geometric random walk for the fluctuating rate r, this being the most common mathematical process used in finance to model interest rate fluctuations (i.e. this isn't a crazy or weird model, but a highly plausible one).

Their simulations show that, as a result, the effective discount factor Deff(T) doesn't have an exponential form at all, but rather a very different "power law" form,


where α and β are constants. This falls off with increasing T much slower than an exponential. In other words, it makes discounting much weaker than the incorrect exponential form would suggest it should be.

In the earlier post I discussed some of the implications of this result and a table indicating just how rapidly, after 200 years or so, the exponential and power law forms give wildly different results, with the exponential discounting the value of the future millions or billions of times too strong.

It's rather frightening that a subtle error could make us mis-value the future so profoundly, but this indeed seems to be what we are currently doing. The incorrect exponential form is in wide and standard use by economists doing cost-benefit analyses of everything.

77 comments:

  1. This comment has been removed by the author.

    ReplyDelete
  2. Don't discard exponential discounting just yet. Farmer and Geanakoplos base their 'hyperbolic discount function' on the subjective value test subjects place on events far into the future. Experience and common sense tells me that people are NOT good at making such estimates.

    But even if they were, there is still a more fundamental flaw in Farmer and Geanakoplos' argument. Exponential discounting is a way of expressing the value of a future cash flow as the amount of money one would have to deposit in an account earning continuously compounded interest, today. It is not a subjective valuation of the future cash flow! Money in a deposit account, on the other hand, does not accumulate according to a hyperbolic function!

    So if Farmer and Geanakoplos care so much about events 500 or 700 years from now, they should simply found an 'environment preservation fund' and deposit one dollar earning the risk-free interest rate. Then they can sit back and let the force of compound interest work its magic.

    If you don't believe me, consider what will happen to $1 deposited in an account for 500 years at a (continuously compounded) rate of 4% per annum. Ten compare this with Farmer and Geanakoplos' hyperbolic function using, for instance, alpha = 0.04 and beta = 0.9. Which would you prefer? :)

    ReplyDelete
  3. Jens, you seem to confuse risk-free rate and discount rate. It is common in financial models to discount using the risk-free rate, but the real discount rate includes also premiums for risk, alternativity etc.

    ReplyDelete
  4. Jens,
    This might be true if there was such a thing as a 4% annual return over 500 years - but because of rate fluctuation and risk, there is not. In fact, 30 years is as good as it gets - and that still has default risk.

    ReplyDelete
  5. This can't be right. It seems to completely ignore 30 years of research on consistent yield curve modeling. There are perfectly mathematically well-defined and plausible models of interest rates that will reproduce today's forward rate curve under almost any reasonable dynamics. Geometric brownian motion does give somewhat stupid results in the very long term (because rates get concentrated close to zero), but that model wasn't handed down by god - there are other much more empirically reasonable models widely used in finance. (Almost certainly that includes models that Geanakoplos uses, since he's a partner in a mortgage hedge fund, and those types of investors drove a lot of the model development.)

    Gotta go find the paper...

    ReplyDelete
  6. I am a big fan of New Scientist, but I do not understand why a two year old article is suddenly news-worthy. Did it finally get picked up by a journal?

    The main point seems to be that people may be irrational in ignoring the mean-reversion of discounting rates that has been apparent in the pricing of government bonds.

    Fine, then we are irrational. But is that a basis for policy?

    Fair-enough, the evidence for mean-reversion is only apparent for the next thirty-ish years (and has been for the past hundred) -- so maybe there is a basis for doubt when one speculates about inter-temporal preferences several centuries from now -- but it would seem to be a bit anti-science to ignore the data at hand just because it contradicts an (irrational) belief.

    ReplyDelete
  7. The problem with such reasoning is that it doesn't scale properly with dt. Make dt much less than a year (say, 1/1000th of a year), and then run the simulations to price a 30 year bond (30000 time periods). You'll get a miniscule rate, approaching 0 as dt -> 0. Other models don't have this characteristic; they are robust to choice of dt.

    ReplyDelete
  8. @ D Mac

    I haven't read the paper. Is the scaling problem you highlight to do with how you calculate the rate of variability of interest rates fluctuations? I.e., the probability an interest rate will move by more than 2 percentage points in a year is greater than the probability is will move by 2 percentage points in a day. That would mean that as you scale down the period and dt, you get increasingly smaller ranges of interest rate realizations that you average over. In the limit, as time goes to zero, there would be no variation in interest rates at all, and you would just have whatever rate you started with.

    ReplyDelete
  9. Isn't the result of the paper driven by assuming non-stationary process for one-period discount rates? It seems to me that if r(t) was stationary, then its average over large number of periods would converge to some mean discount rate E[r], and D(T) would converge to something like exp(-E[r]*T) - a standard exponential discounting formula.

    ReplyDelete
  10. @ivansml - I agree. I think that's part of it. What's weird is that they picked up from the Ho-Lee paper of the mid-'80s and ignored all of the (much more realistic) models of interest rate dynamics developed since then. The realistic models all have (quasi) stationary processes for the short rate. ("Quasi" because there are always initial transients to match today's forward curve.) A simple example is the Hull-White model, which has gaussian interest rates. That model has certainty-equivalent exponential discount factors.

    ReplyDelete
  11. Finance Outlook, the complete financial solution.We provide one of a kind innovative financial remedies to all the financial riddles and puzzles that you tumble upon, every moment.

    ReplyDelete
  12. "They used a so-called geometric random walk"

    That assumption needs to be justified. What is a geometric random walk?

    ReplyDelete
  13. "Geometric Random Walks: A Survey
    SANTOSH VEMPALA

    Abstract. The developing theory of geometric random walks is outlined
    here. Three aspects|general methods for estimating convergence (the
    \mixing" rate), isoperimetric inequalities in Rn and their intimate connec-
    tion to random walks, and algorithms for fundamental problems (volume
    computation and convex optimization) that are based on sampling by random walks|are discussed.

    1. Introduction
    A geometric random walk starts at some point in Rn and at each step, moves to a \neighboring" point chosen according to some distribution that depends only on the current point, e.g., a uniform random point within a xed distance.

    The sequence of points visited is a random walk. The distribution of the
    current point, in particular, its convergence to a steady state (or stationary) distribution, turns out to be a very interesting phenomenon. By choosing the one-step distribution appropriately, one can ensure that the steady state distribution is, for example, the uniform distribution over a convex body, or indeed any reasonable distribution in Rn."

    To make this assumption is scientism, not economics. I'm afraid your committment to physics is ruining your chances of becoming a good economist.

    ReplyDelete
  14. It's called "adjusting the wooden ear phones" (from Feynman's talk on cargo cults)

    http://www.lhup.edu/~DSIMANEK/cargocul.htm

    ReplyDelete
  15. I see the superlative contents on your blogs and I perfectly enjoy going through them.
    unsecured loans online

    ReplyDelete
  16. Your computer is rattling instructive and your articles are wonderful.dui attorneys

    ReplyDelete
  17. Thanks for sharing this information its really nice.
    advantages of roll over iras

    ReplyDelete
  18. I would surely give 10 on 10 for such incredible content.
    whole life insurance quotes

    ReplyDelete
  19. Cool website buddy I am gona suggest this to all my list of contacts.
    whole life insurance quotes online

    ReplyDelete
  20. I went over this website and I conceive you've got a large number of splendid information,
    payday loans online direct lenders

    ReplyDelete
  21. I would be appreciating all of your articles and blogs as a result of their suiting up mark.
    payday loan online

    ReplyDelete
  22. Modern times when internet has so much facility of gossip and stuff, your articles have awfully refreshed me.accident compensation

    ReplyDelete
  23. Visit our web and get free Digital Event tickets online. It will be helpful for you.

    ReplyDelete
  24. خدمات تسليك المجاري شركة تسليك مجارى بالرياض نقدم اليكم افضل الخدمات علي الاطلاق حيث اننا نقوم بحل مشكلة
    شركة تسليك مجاري بالرياض انسداد المجاري بافضل الطرق فنحن

    ReplyDelete


  25. شركة نقل عفش
    اهم شركات مكافحة حشرات بالخبر كذلك معرض اهم شركة مكافحة حشرات بالدمام والخبر والجبيل والخبر والاحساء والقطيف كذلك شركة رش حشرات بالدمام ومكافحة الحشرات بالخبر
    شركة مكافحة حشرات بالدمام
    شركة تنظيف خزانات بجدة الجوهرة من افضل شركات تنظيف الخزانات بجدة حيث ان تنظيف خزانات بجدة يحتاج الى مهارة فى كيفية غسيل وتنظيف الخزانات الكبيرة والصغيرة بجدة على ايدى متخصصين فى تنظيف الخزانات بجدة
    شركة تنظيف خزانات بجدة
    شركة كشف تسربات المياه بالدمام
    شركة نقل عفش واثاث

    ReplyDelete


  26. شركة نقل عفش بالرياض وجدة والدمام والخبر والجبيل اولقطيف والاحساء والرياض وجدة ومكة المدينة المنورة والخرج والطائف وخميس مشيط وبجدة افضل شركة نقل عفش بجدة نعرضها مجموعة الفا لنقل العفش بمكة والخرج والقصيم والطائف وتبوك وخميس مشيط ونجران وجيزان وبريدة والمدينة المنورة وينبع افضل شركات نقل الاثاث بالجبيل والطائف وخميس مشيط وبريدة وعنيزو وابها ونجران المدينة وينبع تبوك والقصيم الخرج حفر الباطن والظهران
    شركة نقل عفش بجدة
    شركة نقل عفش بالمدينة المنورة
    شركة نقل اثاث بالرياض
    شركة نقل عفش بالدمام

    ReplyDelete
  27. The distribution of the
    current point, in particular, its convergence to a steady state (or stationary) distribution, turns out to be a very interesting phenomenon.

    ReplyDelete
  28. It is nice blog Thank you porovide important information and i am searching for same information to save my time Data Science online Training

    ReplyDelete

  29. We to tell the truth think you would need seriously designed most people within the explanation uncovered plenty of people have the method when it comes to cool off a good storyline using a massive supplemental efficient essential. Page easily are convinced trust working experience good commercialized other individuals about the chance until now have you can expect to have point in time to guarantee everyone on line data backup all suggestion swimming pool. wide-ranging bit more good quality records. Add-ons follow-up Boston red sox tickets Ok bye for good material.

    ReplyDelete

  30. Regards just for excellent knowledge. We will start off an innovative new endeavor around the identical markets as this approach blog. Pretty decent help! Visitor afterward many along with noticed presumes might think these sorts of a tremendous amount understand! Up to now continue on this sort of kitchen remodeling weschester county Very much about section Serious purchased.

    ReplyDelete
  31. Nice blog, keep more updates about this type of information. Visit for the best Website Designing and Development Company in Delhi.
    Top 5 Website Designing Company in Delhi

    ReplyDelete
  32. Get Mutual Fund Investment Schemes by Mutual Fund Wala and know about the best investment platform for you, to get profit.
    Mutual Fund Agent

    ReplyDelete
  33. Alleyaaircool is the one of the best home appliances repair canter in all over Delhi we deals in repairing window ac, Split ac , fridge , microwave, washing machine, water cooler, RO and more other home appliances in cheap rates

    Window AC Repair in vaishali
    Split AC Repair in indirapuram
    Fridge Repair in kaushambi
    Microwave Repair in patparganj
    Washing Machine Repair in vasundhara
    Water Cooler Repair in indirapuram
    RO Service AMC in vasundhara
    Any Cooling System in vaishali
    Window AC Repair in indirapuram

    ReplyDelete
  34. Magnificent data, visit our page way of life magazine to get the best style and way of life magazines.
    Lifestyle Magazine

    ReplyDelete
  35. Agar aap chatey hai ki aapka boyfriend ya girlfriend ka rishta tut jae toh aap Rishta todne ki dua Duas in islam is the best dua for love back.

    ReplyDelete
  36. This is really nice, thanks again for this wonderful and valuable information sharing with us. Visit Kalakutir for Godown Floor Marking Painting and Base Company Logo Painting.
    Godown Floor Marking Painting

    ReplyDelete
  37. Usually I never comment on blogs but your article is so convincing that I never stop myself to say something about it. You’re doing a great job Man,Keep it up.
    Best study in uk consultants in delhi
    ielts coaching in gurgaon

    ReplyDelete
  38. What is the most significant thing throughout everyday life?

    It is consistently those significant things in life that we underestimate.
    A huge number of things will ring a bell now, however you will in all probability overlook one. It is so basic but then it decides our lives each second.
    BREATHING!
    Noson® AG has been managing this test since 2013.
    As a Swiss startup, we have helped more than 3,600 individuals inhale ordinarily once more.
    This reaches from proficient competitors with nasal wing suction wonders to individuals with wheezing issues.
    Presently we offer our most recent advancement to the worldwide market so as to support mankind.



    internal nasal dilators

    ReplyDelete
  39. Eyal Nachum is a fintech guru and a director at Bruc Bond. Eyal is the architect of the software that SMEs use to do cross-border payments.



    Eyal Nachum


    ReplyDelete
  40. Bruc Bond - Bruc Bond endeavor to lead the financial sector with sustainability, customizable product offering, and open communication. At Bruc Bond we aim to make 21st century banking straightforward, simple, and transparent.



    Bruc Bond

    ReplyDelete
  41. Bruc Bond endeavor to lead the financial sector with sustainability, customizable product offering, and open communication. At Bruc Bond we aim to make 21st century banking straightforward, simple, and transparent.



    Bruc Bond

    ReplyDelete
  42. Medical is the field of wellbeing and recuperating. It incorporates medical attendants, specialists, and different authorities. It covers finding, treatment, and anticipation of infection, clinical research, and numerous different parts of wellbeing.



    Alexander Kogan

    ReplyDelete
  43. Finance is a broad term that describes activities associated with banking, leverage or debt, credit, capital markets, money, and investments. ... Finance also encompasses the oversight, creation, and study of money, banking, credit, investments, assets, and liabilities that make up financial systems



    bank account


    ReplyDelete
  44. thank you for taking the time to talk about this, I experience strongly approximately it and love getting to know extra in this subject matter.
    If possible, as you advantage knowledge, might you thoughts updating your blog with greater statistics? it is extremely helpful for me



    Divi Theme Nulled

    ReplyDelete
  45. I think this is one of the best blog for me because this is really helpful for me. Thanks for sharing this valuable information for free...
    packers and movers in patna

    ReplyDelete
  46. Unfortunately, games like Fortnite, Apex Legends, Minecraft, PUBG and GTA V don’t work on this laptop. PCGameBenchmark Ratings
    are based on a number of the best computer games that you can play on your computer. This laptop can play 252 of the top 1000 games



    samsung a50 price in sri lanka

    ReplyDelete
  47. Financial technology (Fintech) is used to describe new tech that seeks to improve and automate the delivery and use of financial services. ​​​At its core, fintech is utilized to help companies, business owners and consumers better manage their financial operations




    Bruc Bond

    ReplyDelete
  48. Wow!!Great post. Thanks for sharing this informative article. Keep it up.
    iNeedTrip provides best tour packages from India to different International destinations for Honeymoon & Holidays.
    Best Travel Company
    Travel Company in Ghaziabad
    Bali Tour Packages
    Singapore Tour Packages
    Mauritius Tour Packages
    Maldives Tour Packages
    Dubai Tour Packages

    ReplyDelete
  49. Your article is very interesting.
    Want to make your own website!!!
    Contact "Essencesoftwares" the best web design company in India.
    Essence Softwares provides: Website Development Services, App Development Services, Digital Marketing Services, IoT Solutions Services and Startup Consulting Services.
    Web Development Company in India
    App Development Company in India
    Web Development Company in Edinburgh
    App Development Company in Edinburgh
    Web Development Company in Gurgaon
    App Development Company in Gurgaon

    ReplyDelete
  50. offshore savings interest rates
    Pretty good post. I just stumbled upon your blog and wanted to say that I have really enjoyed reading your blog posts. Any way I’ll be subscribing to your feed and I hope you post again soon.

    ReplyDelete
  51. Your weblog provided us with precious records to paintings with. each & every suggestions of your publish are amazing.
    thank you a lot for sharing. preserve running a blog.



    best 2 in 1 laptops under 300

    ReplyDelete
  52. This particular is commonly unmistakably essential and what's more outstanding truth close by no ifs ands or buts sensible furthermore in actuality important My business is looking for find early proposed for this specific supportive stuffs



    naso chiuso


    ReplyDelete
  53. country inn and suites
    Many thanks for the exciting blog posting! Simply put your blog post to my favorite blog list and will look forward for additional updates. Simply wanted to write down a word in order to say thanks to you for those wonderful tips.

    ReplyDelete
  54. i'm in reality very satisfied to go to your blog. Now i'm discovered which I surely want. thanks plenty for sharing a
    piece of notable facts which i am searching out an extended time period



    good gaming laptops under 1000

    ReplyDelete